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ABSTRACT
In software projects, applications are often monitored by systems
that automatically identify crashes, collect their information into
reports, and submit them to developers. Especially in popular ap-
plications, such systems tend to generate a large number of crash
reports in which a significant portion of them are duplicate. Due to
this high submission volume, in practice, the crash report deduplica-
tion is supported by devising automatic systems whose efficiency is
a critical constraint. In this paper, we focus on improving deduplica-
tion system throughput by speeding up the stack trace comparison.
In contrast to the state-of-the-art techniques, we propose FaST,
a novel sequence alignment method that computes the similarity
score between two stack traces in linear time. Our method inde-
pendently aligns identical frames in two stack traces by means of a
simple alignment heuristic. We evaluate FaST and five competing
methods on four datasets from open-source projects using rank-
ing and binary metrics. Despite its simplicity, FaST consistently
achieves state-of-the-art performance regarding all metrics consid-
ered. Moreover, our experiments confirm that FaST is substantially
more efficient than methods based on optimal sequence alignment.
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 1  Crashed when I opened a website and clicked on 'flash version'.
 2
 3  Architecture: amd64
 4  Date: Tue Jun 19 20:16:04 2007
 5  DistroRelease: Ubuntu 7.10
 6  ExecutablePath: /usr/bin/gnash
 7  NonfreeKernelModules: vmnet vmmon cdrom
 8  Package: gnash 0.8.0~cvs20070611.1016-1ubuntu2
 9  PackageArchitecture: amd64
10  ProcCwd: /home/martin
11  SourcePackage: gnash
12  UserGroups: adm admin audio cdrom dialout dip floppy video
13  Title: gnash crashed with SIGSEGV in std::_Rb_tree::erase()
14  
15  #0  0x027540aea in std::_Rb_tree::erase() at /usr/include/c++/4.1/bits/stl_tree.h:692
16  #1  0x027540b78 in std::_Rb_tree::erase() at /usr/include/c++/4.1/bits/stl_tree.h:1215
17  #2  0x02753f0c5 in movie_root::remove_key_listener() at /usr/include/c++/4.1/bits/stl_set.h:387
18  #3  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280
19  #4  0x02753f0d3 in movie_root::remove_key_listener() at /usr/include/boost/intrusive_ptr.hpp:83
20  #5  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280
21  #6  0x02753f0d3 in movie_root::remove_key_listener() at /usr/include/boost/intrusive_ptr.hpp:83
22  #7  0x02758100d in ~button_character_instance() at button_character_instance.cpp:280

Figure 1: Crash report example.

1 INTRODUCTION
To reduce user dependence in bug reporting and collect more data
about errors, many software projects use automated crash reporting
systems to monitor application executions. When target systems
crash, such tools are invoked to gather relevant information about
the failures and send it to backend systems [7].

The submitted information about a software error is grouped in a
document called the crash report. A shortcoming of automated crash
reporting systems is that they tend to rapidly increase the number
of duplicate crash reports, that is, reports associated with the same
failure. Therefore, it becomes vital to automate deduplication when
such tools are employed [15]. In the literature, such a task is denoted
crash report deduplication, being also referred to as duplicate crash
report detection or crash report bucketing [5].

In Figure 1, we depict an example of a crash report. Such doc-
uments may include the failure descriptions provided by users
(lines 1 and 13) and environment information (lines 5–12). Ad-
ditionally, crash reports contain stack traces (lines 15–22), one of
the most valuable information source for bug fixing [25]. A stack
trace is a sequence of frames in which the first frame corresponds
to the topmost element in the application’s call stack at the mo-
ment a crash occurs. The subsequent frames represent subroutines
waiting for the execution of the previous frames near to the top. As
shown in Figure 1, stack traces can contain multiple information
about the frames (e.g., the source file name). Inspired by previous
works [4, 7, 23, 24], this paper focuses on the positions and sub-
routine names of the frames. Moreover, to compare whether two
frames are identical or not, we consider subroutine names as frame
identifiers (shortly, frame ids).

In the literature, a prevalent assumption is that crash reports
are more likely to be duplicate when their stack traces are similar.
Thus, the majority of techniques address crash report deduplication

https://doi.org/10.1145/3524842.3527951
https://doi.org/10.1145/3524842.3527951


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Muller Rodrigues, et al.

by comparing stack traces. For instance, TraceSim [23], one of the
current state-of-the-art (SOTA) methods in crash report dedupli-
cation, measures the similarity of two stack traces by computing
a weighted version of the optimal global alignment score [21] be-
tween them. In real environments, hundreds or even thousands
of crash reports are submitted every day [5]. Each one of them
must be analyzed by deduplication systems to identify whether
they are duplicate in very large repositories of submitted reports.
Hence, due to this high volume of data, deduplication systems must
be implemented observing feasible throughput. A simple strategy
to improve deduplication system performances is to speed up the
similarity measurement of stack traces. In the literature of crash
report deduplication, some methods can efficiently compare two
stack traces in𝑂 (𝑚 +𝑛), where𝑚 and 𝑛 are their lengths. However,
such methods are significantly less effective than TraceSim, that
computes the stack trace similarity score in 𝑂 (𝑛𝑚).

The inefficiency of methods based on optimal sequence align-
ment, including TraceSim, are mainly caused by their search for
optimal alignments. In order to guarantee optimality, these methods
iteratively compute a dynamic programming matrix using recursive
functions. Furthermore, the found alignment must preserve the se-
quence order which makes challenging to independently compare
subsets of subroutines in stack traces. Leveraging the removal of the
optimality requirement and the order constraint, one can develop
efficient heuristic algorithms that find near-optimal alignments. It is
worthy to mention here that the final task objective does not consist
in finding the optimal sequence alignment, but rather computing
similarity scores that are effective to group duplicate reports.

Inspired by this idea, we propose FaST, a Fast Stack Trace align-
ment method for crash report deduplication. In FaST, the sequence
alignment is produced by individually aligning the frames of each
unique identifier in the stack traces. Since stack traces of dupli-
cate reports are expected to contain subroutines in similar absolute
positions [23], we argue that similarity scores can be fairly cap-
tured by directly comparing overlaps or missing frames of each
individual subroutine. Instead of optimally aligning frames, we em-
ploy a simple alignment heuristic: given the frames of each distinct
indentifier, FaST iteratively matches the two closest ones to the
top positions. Such heuristic is based on the rationale that frames
near the topmost position should be prioritized for alignment over
those in the bottom, since they are usually more relevant for the
deduplication [7, 23, 25]. In cases where frames of an identifier are
only available in one of the stack traces, FaST aligns such remaining
frames to special structures, called gaps. After finding the align-
ment, the similarity score is computed considering two important
pieces of information regarding a subroutine: its position and its
global frequency [23]. Due to its simplified alignment algorithm,
FaST can compare stack traces in 𝑂 (𝑛 +𝑚), i.e., linear time on the
length of the two sequences.

We experimentally evaluate the efficiency and effectiveness of
FaST by means of the methodology proposed by Rodrigues et al.
[23]. We compare FaST with SOTA systems and strong baselines
on four different datasets from the following open-source projects:
Ubuntu, Eclipse, Netbeans, and Gnome. In our experiments, FaST
consistently achieves similar or significantly superior performance
in terms of effectiveness when compared with its competing meth-
ods. Moreover, as expected, we observe that FaST is considerable
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Figure 2: Example of a global alignment between the stack
traces adca and daccb. Matches, mismatches and gaps are
represented by white, red, and gray, respectively.

faster than optimal sequence alignment methods. It is important to
highlight that we provide the source code of the evaluation frame-
work and methods online1. The main contributions of this paper
are summarized as follows:

(1) We propose a novel stack trace alignment method with a
linear time complexity for crash stack deduplication.

(2) We show that a simple alignment heuristic can be as effec-
tive for deduplication as techniques that find optimal global
alignments.

(3) Our proposedmethod achieves state-of-the-art performances
on all the considered datasets despite its simplicity.

2 FAST STACK TRACE ALIGNMENT METHOD
FOR CRASH REPORT DEDUPLICATION

As mentioned in the introduction, studies in the literature have
addressed crash report deduplication by measuring stack trace
similarity based on optimal global alignment. In the context of such
problem, the term global means that frames are lined along the
entire lengths of the compared stack traces.

In Figure 2, we depict an example of global alignment between
two toy stack traces adca and daccb. As shown in the figure, there
are three types of possible alignments:match,mismatch, and gap. A
match occurs when two identical frames are aligned (e.g., the align-
ment between two frames a). Conversely, a mismatch arises when
two distinct frames are aligned (e.g., frames a and b highlighted in
red). The third type of alignment corresponds to lining up a frame
to a gap (e.g., frames d and the cubes with dashed border). A gap
represents an insertion/deletion operation performed in a sequence.
A global alignment is only valid if the original sequence can be
restored by removing the gaps, i.e., the sequence order cannot be
altered.

There are many distinct ways to align two stack traces end-to-
end. In order to find the best global alignment, a scoring scheme
is defined to assign a value to each element alignment. Follow-
ing such scheme, the score of the entire sequence alignment is
equal to the sum of matches values subtracted by the values of
mismatch and gap alignments. The optimal global alignment con-
sists in finding an alignment between two sequences for which the
score alignment is maximum. Given two sequences with lengths
𝑛 and𝑚, the optimal alignment can be found in 𝑂 (𝑛𝑚) time with
the Needleman–Wunsch (NW) algorithm [21].

In this section, we present FaST, a novel sequence alignment
method that effectively aligns two stack traces in𝑂 (𝑛 +𝑚) time. To
achieve such complexity, FaST relaxes the optimal global alignment
problem, allowing the computation of sub-optimal and non-ordered
alignments.

1https://github.com/irving-muller/FaST

https://github.com/irving-muller/FaST
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2.1 Similarity Algorithm
Similar to the optimal global alignment problem, FaST compares
two stack traces based on the overlaps (represented by matches)
and differences (captured by mismatches and gaps) between them.
First, matches are performed by successively lining up the top-
most unaligned frames with the same id. Each match increases
the similarity score based on two factors: frame importance and
the position discrepancy between the matched frames. The for-
mer depends on position and subroutine global frequency (two
key frame features) and the latter alleviates the impact of poor
matches performed by the heuristic alignment. After performing
match alignments, all unmatched frames are aligned to gaps due to
empirical evidences that gaps are more adequate than mismatches
for crash report deduplication [23]. Each gap alignment penalizes
the similarity score also based on the frame importance. Following
previous works [7, 19, 23], the similarity score is normalized to be
in range [-1.0, 1.0].

In Algorithm 1, we present the pseudo-code of FaST algorithm
to compute the similarity score for two stack traces. The functions
match(·) and gap(·) compute the values of a match and gap align-
ments, respectively, while w(·) returns a real number, called frame
weight, that indicates the frame importance for the deduplication.
Further details about such functions are provided in Section 2.2. In
Figure 3, we depict an example of this algorithm execution on two
toy stack traces.

As input, the similarity algorithm receives two lists sorted by
frame id and position in ascending order. After sorting, each frame
in 𝑄 and 𝐶 are represented as 𝑓𝑝 where 𝑓 is its id and 𝑝 is its
position in the original stack trace. Basically, the sorting operation
is analogous to split the frames in the stack trace and group them by
their identifiers. It is worthy mentioning that such sort is executed
only once right after stack trace creation. Thus, we consider that
its time complexity is amortized given: (i) the relative short lengths
of stack traces2; and (ii) the amount of comparisons performed to a
given stack trace in real applications of crash report deduplication
is much larger than 𝑂 (𝑛 log𝑛).

During initialization, the algorithm creates two pointers that
refer to the beginning of each list. Each pointer represents the next
available frame in a list for the alignment. In the example presented
in Figure 3b, the pointers are illustrated by 𝑖 and 𝑗 and they point
to the first frames of the sorted list 𝑄 and 𝐶 , respectively. As first
step, FaST compares the frame ids pointed by 𝑖 and 𝑗 , i.e., the first
elements within 𝑄 and 𝐶 . Since the identifiers are the same, 𝑎1 and
𝑎2 are matched. Then, 𝑖 and 𝑗 are moved to the next elements in
the lists – 𝑎4 and 𝑏5, respectively. The result of this procedure is
depicted in Figure 3c. In the next step, 𝑖 and 𝑗 refers to different
subroutines. Since frames are sorted by the subroutine identifiers
and 𝑎 is smaller than 𝑏, this means there is no other available frame
with id = 𝑎 in the list 𝐶 . Therefore, as illustrated in Figure 3d, 𝑎4 is
aligned to a gap and 𝑖 is jumped to the subsequent available frame
in𝑄 . The algorithm proceeds by sequentially comparing the frames
pointed by 𝑖 and 𝑗 . Match alignment is performed when frames
share the same ids, otherwise the frame with the smallest identifier
is aligned to a gap. The pointers are moved to the next available
element in the sorted lists when the pointed frames are aligned. If

2In our datasets, 98% of the stack traces are shorter than 126 subroutines.

Algorithm 1: FaST pseudo-code
Input: 𝑄 and 𝐶: lists of frames of two stack traces that are

sorted by frame ids and positions.
Output: Normalized similarity between 𝑄 and 𝐶 .

1 𝑠𝑖𝑚 ← 0.0
2 𝑖 ← 1
3 𝑗 ← 1
4 while 𝑖 < length(𝑄) and 𝑗 < length(𝐶) do

// 𝑞 and 𝑢 are the id and position of 𝑄 [𝑖]
5 𝑞𝑢 ← 𝑄 [𝑖]

// 𝑐 and 𝑣 are the id and position of 𝐶 [ 𝑗]
6 𝑐𝑣 ← 𝐶 [ 𝑗]
7 if 𝑞 == 𝑐 then

// Match alignment.

8 𝑠𝑖𝑚 += match(𝑞𝑢 , 𝑐𝑣)
9 𝑖 += 1

10 𝑗 += 1
11 else if 𝑞 < 𝑐 then

// 𝑄 [𝑖] is aligned to a gap.

12 𝑠𝑖𝑚 −= gap(𝑞𝑢 )
13 𝑖 += 1
14 else

// 𝐶 [ 𝑗] is aligned to a gap.

15 𝑠𝑖𝑚 −= gap(𝑐𝑣)
16 𝑗 += 1

// Align remaining frames in 𝑄 or 𝐶 to gaps

17 while 𝑖 < length(𝑄) do
18 𝑠𝑖𝑚 −= gap(𝑄 [𝑖])
19 𝑖 += 1
20 while 𝑗 < length(𝐶) do
21 𝑠𝑖𝑚 −= gap(𝐶 [ 𝑗])
22 𝑗 += 1

// Normalize the similarity score

23 return 𝑠𝑖𝑚∑
𝑞𝑢 ∈𝑄 w(𝑞𝑢 )+

∑
𝑐𝑣∈𝐶 w(𝑐𝑣 )

the algorithm reaches the end of a list, then the remaining frames
within the other one are aligned to gaps. Regarding our example,
we depict the final alignment between 𝑄 and 𝐶 found by such
algorithm in Figure 3e.

A limitation of FaST’s algorithm is that it does not directly pe-
nalize order inversions. As depicted in Figure 3e, even though the
two first frames in𝑄 and𝐶 are in inverse order, FaST still performs
two matches between these frames. On the other hand, as shown in
Figure 2, the NW algorithm penalizes this inversion by only match-
ing the frames a and performing a mismatch and a gap alignment
regarding the frames d. Nevertheless, in FaST, the higher is the
position difference between two matched frames, the lower is their
match value (further details in Section 2.2). Thus, if two frames
have their relative order inverted, at least one of them will be in
different positions in the two sequences, and this will be penalized
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a d c a

d a c c b

1 2 3 4

1 2 3 4 5

(a) Original stack traces.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(b) Input and initialization.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(c) End of step 1.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(d) End of step 2.

a1 a4 c3 d2

a2 b5 c3 c4 d1

(e) Final alignment.

Figure 3: An example of FaST’s alignment algorithm.

by our method. Furthermore, order inversions are not usual in stack
traces, since they imply indirect recursions.

Asmentioned earlier, the score of the final alignment is computed
based on the chosen scoring scheme – functions match(·), gap(·),
and w(·) – and it is normalized to be in a fixed interval – line 23
in Algorithm 1. These algorithm aspects are described in details in
the remainder of this section.

2.2 Scoring Scheme
In FaST, values of each match and gap alignments are computed
using a scoring scheme similar to the one proposed by Rodrigues
et al. [23]. In this scoring scheme, weights are assigned to each
frame in the stack traces. A weight captures the importance of a
frame 𝑓𝑝 for the deduplication and it is computed as follows:

w(𝑓𝑝 ) =
1
𝑝𝛼
× 𝑒−𝛽

df (𝑓 )
|𝑆 | , (1)

where |𝑆 | is the total number of stack traces in a repository 𝑆 ,
and df (·) is the number of stack traces in 𝑆 that contain at least a
subroutine identifier equal to 𝑓 . The first component of (1) assigns
higher values to positions closer to the top since such positions
tend to be more related to the failure. The second one depends on
the rarity of an id among the stack traces in the dataset. Frequent
subroutines are usually ordinary operations in a system (e.g, logging
and error-handling) and, thus, they are likely unrelated to the crash
cause. Therefore, the more frequent the id of a frame is, the lower its
weight should be. In Equation 1, similar to a logical AND, these two
components are multiplied to consider a frame irrelevant for the
deduplication when either its position is close to the bottom or its
subroutine is frequent. Finally,𝛼 ∈ R>0 and 𝛽 ∈ R>0 are parameters
that control the impact of the frame position and subroutine rarity
on the weight value, respectively.

Following the original scheme, the gap alignment value is equal
to the weight of a frame 𝑓𝑝 aligned to a gap:

gap(𝑓𝑝 ) = w(𝑓𝑝 ) . (2)

However, unlike Rodrigues et al. [23] that employ the maximum
weight between two matched frames 𝑞𝑢 and 𝑐𝑣 , we calculate the
match value by means of the sum of these weights:

match(𝑞𝑢 , 𝑐𝑣) = (w(𝑞𝑢 ) +w(𝑐𝑣)) × diff (𝑢, 𝑣), (3)

where the function diff (·) is defined as:

diff (𝑢, 𝑣) = 𝑒−𝛾 |𝑢−𝑣 | .

The parameter 𝛾 ∈ R>0 regulates the impact of the position dif-
ference on the function output. Since a common assumption is
that same subroutines appear in closer positions in stack traces of
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Figure 4: Normalization example.

duplicate crash reports, diff (·) reduces the match value based on
the position discrepancy of the matched frames.

2.3 Normalization
After aligning the stack traces, the alignment score is computed as
the sum of the match values minus the sum of each gap alignment
value. However, such score is not directly used for the deduplication
since it can degrade the method effectiveness [23]. For instance,
three stack traces 𝑆𝑇 1, 𝑆𝑇 2, and 𝑆𝑇 3 are depicted in Figure 4. Frame
weights are represented by the real numbers below each subroutine
identifier. In this example, the alignment scores are -1.7 and -2.2
when 𝑆𝑇1 is compared with 𝑆𝑇2 and 𝑆𝑇3, respectively. However,
this is unreasonable because 𝑆𝑇1 is completely different of 𝑆𝑇2
while the two topmost frames of 𝑆𝑇 1 and 𝑆𝑇 3 are overlapped. Such
contradictory scores occurs because the alignment score is highly
dependent on the frame weight values. Therefore, in order to miti-
gate such issue, the similarity scores are normalized based on the
frame weights [7, 23].

Considering the definitions of gap and match (Equations 2 and
3), we can normalize the similarity score to be within the interval
[−1.0, 1.0] by simply dividing the alignment score by the sum of
frame weights in the two stack traces (line 23 in Algorithm 1). For
instance, the sum of weights are 1.3, 0.4, and 3.7 in 𝑆𝑇1, 𝑆𝑇2, and
𝑆𝑇 3, respectively. Thus, the similarity score by comparing 𝑆1 with
𝑆2 and 𝑆3 is −1.7

1.3+0.4 = −1.0 and −2.2
1.3+3.7 = −0.44, respectively.

3 RELATEDWORKS
In this section, we focus on studies that address crash report dedu-
plication by means of stack trace similarity.

Modani et al. [19] proposed a prefix match algorithm in which
the similarity is proportional to the length of the longest common
prefix between two stack traces.

Methods based on the popular TF-IDF approach (Term Frequency
– Inverse Document Frequency) [5, 16, 24] have also been applied
to crash report deduplication. Lerch and Mezini [16] and Campbell
et al. [5] employed the TF-IDF-based score function from Lucene
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library3 to measure the stack trace similarity. Sabor et al. [24] pro-
posed the DURFEX technique, which uses only the package name of
the subroutines, to compare two stack traces using the cosine simi-
larity of their vector representations. One important drawback of
these techniques is that they ignore a valuable piece of information:
the position of the frames within the stack trace.

Some studies [4, 7, 23] proposed variantions of the NW algo-
rithm to measure the similarity between two stack traces. In the
technique designed by Brodie et al. [4], while mismatch and gap
alignment values are constant, the match values are computed
based on the rarity and position of the matched subroutines. On
the other hand, Dang et al. [7] proposed a method, called PDM, in
which match values depend only on the frame positions and the
alignment score is not penalized by mismatches and gap alignments.
Moreover, PDM contains parameters that regulate the impact of
position information on the optimal solution. More recently, Ro-
drigues et al. [23] proposed TraceSim, a method for crash report
deduplication that have outperformed previous methods from the
literature. TraceSim computes match, mismatch, and gap values
based on both the position and the global frequency (considering a
large database) of a subroutine. To improve method flexibility over
different data distributions, parameters control the weight of these
two factors on the final similarity.

In order to improve efficiency without degrading the effective-
ness of methods based on NW algorithm, Moroo et al. [20] proposed
a reraking model, called PartyCrasher, that combines information
retrieval techniques and PDM. First, PartyCrasher selects the top-𝑘
most similar candidates to a query by means of the score function
designed by Lucene. Then, PDM is employed to compute the similar-
ity between the selected candidates and the query. Finally, the final
similarity score is a weighted harmonic mean of the similarities
measured by Lucene’s score function and PDM.

Edit distance is equivalent to optimal global alignment [26] and
have been employed by two studies for crash report deduplication.
Bartz et al. [1] proposed a logistic regression model based on the
edit distance between two stack traces and some categorical fea-
tures within the crash reports. To compute the edit distance, Bartz
et al. [1] use the following information regarding a frame in the
stack trace: the subroutine, its offset, and its module. Dhaliwal et al.
[9] proposed to group the crash reports by the subroutine in the top-
most position. Each group is then reorganized in subgroups based
on the edit distance between its stack traces. These two techniques
have the same efficiency issues that are present in techniques based
on global alignment.

Khvorov et al. [15] proposed a siamese deep learning model,
called S3M, for comparing two stack traces. A Long Short-Term
Memory (LSTM) independently encodes the stack traces as fixed-
length vectors. Then, a multilayer perceptron (MLP) computes the
similarity between two stack traces based on their vector represen-
tations.

In Table 1, we present the time complexities of techniques to com-
pute the similarity of two stack traces. Prefix match and methods
based on TF-IDF run in linear time. However, they are less effective
than more computationally expensive methods. Prefix match is
3https://lucene.apache.org/
4This corresponds to the multilayer perceptron complexity time. Such component
contains one hidden layer of size ℎ and receives an input of size 𝑑 .

Table 1: Time complexity of crash report deduplicationmeth-
ods. The lengths of two stack traces is denoted 𝑛 and𝑚.

Method Time complexity

Prefix Match [19] 𝑂 (𝑚𝑎𝑥 (𝑛,𝑚))
Lerch and Mezini [16] 𝑂 (𝑛 +𝑚)
Campbell et al. [5] 𝑂 (𝑛 +𝑚)
DURFEX [24] 𝑂 (𝑛 +𝑚)
Brodie et al. [4] 𝑂 (𝑛𝑚)

PDM [7] 𝑂 (𝑛𝑚)
TraceSim [23] 𝑂 (𝑛𝑚)
Bartz et al. [1] 𝑂 (𝑛𝑚)
S3M [15]4 𝑂 (𝑑ℎ)

highly affected by negligible differences in subroutine positions,
while TF-IDF techniques ignore positional information altogether.
Regarding S3M, considering that representations of stack traces
are computed once and stored in a database, the amortized time
complexity of such model is 𝑂 (𝑑ℎ), where 𝑑 and ℎ are the sizes of
the input and hidden layer, respectively. In practice, 𝑑 and ℎ are
comparable or even larger than the stack trace lengths, e.g., 𝑖 = 600
and 𝑑 = 300 in S3M while we found that, in our experimental setup,
98% of the stack trace contains less than 130 frames. Besides its
quadratic complexity, other limitation of S3M is that it requires a
considerable volume of labeled data for training. However, such
type of data is not always available in industry projects. Unlike
S3M, the parameters of FaST can be manually set by a specialist.

In order to effectively address crash report deduplication, FaST
leverages the empirical findings observed in TraceSim’s study [23],
e.g., frame position, subroutine global frequency, normalization and
function diff (·) are crucial for this task. On the other hand, FaST
finds sub-optimal alignments in linear time complexity that are as
effective as the optimal ones found by TraceSim in quadratic time
(more details in Section 5). Moreover, our method uses a different
function match(·) that is based on the sum of the frame weights
instead of the maximum value between them. Such function allows
to simplify the normalization: whereas TraceSim’s ones is inspired
by the weighted Jaccard index, FaST ’s normalization divides the
alignment score by the sum of all frame weights in the stack traces.

Regarding the literature of sequence alignment works, the major-
ity of them come from bioinformatics field. Thus, several heuristics
for this problem make use of specific aspects of this domain to
speed up algorithms [2]. Although, few optimal sequence align-
ment techniques were proposed besides the NW algorithm, they
still run in𝑂 (𝑛𝑚), being their superiority restricted to bioinformat-
ics instances [6]. Overall, due to the particular characteristics of
bioinformatics field, the proposed methods and their findings are
not applied to the crash report deduplication task.

4 EXPERIMENTAL SETUP
In this section, we present themain components of our experimental
setup: datasets, evaluation methodology, evaluation metrics, and
competing methods. The developed code – including the evaluation

https://lucene.apache.org/
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framework and implementation of FaST and competing methods –
are available online5.

4.1 Datasets
The datasets published by Rodrigues et al. [23] are employed in our
experiments6. Due to scarcity of publicly labeled data, a common
practice in the literature is to generate crash reports by extracting
stack traces from bug reports. Thus, such datasets were created
by parsing bug reports from bug tracking systems (BTS) of four
open source projects: Ubuntu [17], Eclipse [10], Netbeans [12], and
Gnome [11]. Ubuntu’s and Gnome’s repositories are composed of
issues from different applications for Ubuntu Linux distribution and
Gnome desktop environment, respectively. Most of these applica-
tions are developed in C/C++. Eclipse and Netbeans are two popular
Integrated Development Environments (IDEs) implemented in Java.
Statistics of these datasets are presented in Table 2.

Table 2: Statistics of datasets.

Dataset Period # Duplicates # Reports # Buckets

Ubuntu 25/05/07 - 18/10/15 11,468 15,293 3,825
Eclipse 11/10/01 - 31/12/18 8,332 55,968 47,636
Netbeans 25/09/98 - 31/12/16 13,703 65,417 51,714
Gnome 02/01/98 - 31/12/11 117,216 218,160 100,944

We perform two extra preprocessing steps in addition to the ones
applied in [23]. In the provided datasets, a crash report can contain
multiple stack traces. Rodrigues et al. [23] decided to include all
identified stack traces found in the description and attached files of
the original bug reports due to different reasons, e.g., the difficulty to
determine which subroutine caused the failure, parsing limitations,
among others. However, we observed that a significant portion
of the stack traces in crash reports are, in fact, the top-𝑘 frames
of other stack traces in the same reports. In order to improve the
readability, testers and developers may only provide the first frames
of a stack trace in the description of the bug report. The full content
is attached to the report as a file. Thus, to remove this duplicate
data, we identify the longest stack trace 𝑆𝑇 𝑙 in a crash report 𝑟 and,
then, the remaining stack traces in 𝑟 are filtered when they are a
prefix of 𝑆𝑇 𝑙 . Moreover, specifically for Gnome, we applied the same
procedure used in the BTS to identify the "interesting stack traces"
of multi-thread systems7. In a nutshell, such procedure consists
in keeping or removing stack traces based on a list of relevant
subroutine names (e.g., signal and segv). In Table 3, we present
the number of crash reports with more than one stack trace found
in the datasets before and after our preprocessing.

4.2 Evaluation Methodology
In this work, in order to assess different methods, we employ the
comprehensive evaluation methodology proposed in [23]. This
methodology uses a dataset 𝐷 composed of crash reports sorted by
5https://github.com/irving-muller/FaST
6The dataset is available on https://zenodo.org/record/5746044#.YeDFCNtyZH5
7The original code can be found in the function interesting_threads in the follow-
ing file: https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/
head:/lib/TraceParser/Trace.pm

Table 3: Percentage of reports with multiple stack traces in
each dataset before and after the preprocessing.

BTS Before After

Ubuntu 0.03% 0.03%
Eclipse 24.37% 23.75%
Netbeans 61.37% 28.93%
Gnome 80.14% 9.52%

their creation date. Then, a query set 𝑄 is generated by randomly
selecting a sequence of consecutive reports in 𝐷 . In order to assess
a similarity-based deduplication method, each query report 𝑞 ∈ 𝑄
is considered as a newly submitted report, and the method is used
to compute the similarity between 𝑞 and older reports in 𝐷 (reports
submitted before 𝑞).

As mentioned before, crash reports in the dataset are grouped
into buckets. A bucket is the set of all reports associated to the same
software bug and is denoted as 𝐵𝑟 , where 𝑟 is the first submitted
(oldest) report in 𝐵𝑟 . In the used evaluation methodology, when a
query report 𝑞 is considered, buckets for reports submitted before
𝑞 are known. In that way, the evaluation is based on similarities
between the query report 𝑞 and the buckets, instead of individual
reports. The similarity between 𝑞 and a bucket 𝐵 is defined as:

sim′(𝑞, 𝐵) = max
𝑐∈𝐵

sim(𝑞, 𝑐),

where sim(𝑞, 𝑐) is the similarity between the query report 𝑞 and a
candidate report 𝑐 of 𝐵 calculated by the system being evaluated.

Since crash report datasets can be very large, in order to im-
prove system’s efficiency, the deduplication of a query report 𝑞 is
restricted to a subset of candidate buckets denoted as𝐶𝐵 (𝑞). This set
comprises only buckets that include at least one report submitted
within a time window of two years before 𝑞. All reports in such
selected buckets are considered as candidates, including those sub-
mitted outside of the time window. Therefore, when deduplicating
𝑞, buckets are unreachable if all theirs reports are submitted more
than two years before 𝑞. Reports created after 𝑞 are always ignored,
as mentioned above.

For amore detailed and comprehensive explanation of themethod-
ology, we refer the reader to Rodrigues et al. [23].

4.3 Evaluation Metrics
Considering a query set𝑄 , the methodology evaluates a method by
means of three metrics: Mean of Average Precision (MAP), Recall
Rate@𝑘 (RR@𝑘), and Area Under the ROC Curve (AUC). MAP and
RR@𝑘 are ranking metrics, i.e., they assess the quality of ranked
lists generated for each query based on the similarity technique.
In this methodology, a ranked list, denoted as 𝐿(𝑞), consists of the
candidate buckets for a query report 𝑞 sorted by their similarity to 𝑞
in ascending order. Moreover, the ranking metrics are not measured
for queries related to crashes that have never been reported before.
Such non-duplicate reports, called singletons, are ignored in this
ranking evaluation since their respective ranked lists do not contain
their correct bucket (the relevant candidate). We denote 𝑄𝑑 ⊂ 𝑄

the subset of non-singleton queries.

https://github.com/irving-muller/FaST
https://zenodo.org/record/5746044#.YeDFCNtyZH5
https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/head:/lib/TraceParser/Trace.pm
https://bazaar.launchpad.net/~bgo-maintainers/bugzilla-traceparser/3.4/view/head:/lib/TraceParser/Trace.pm
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Considering 𝑝𝐿 (𝑞) as the position of the correct bucket of a query
𝑞 within a ranked list 𝐿(𝑞), RR@𝑘k is computed as follows:

RR@𝑘 =

∑
𝑞∈𝑄𝑑 1[𝑝𝐿 (𝑞) ≤ 𝑘]

|𝑄𝑑 |
,

where 𝑘 ∈ N+ and 1[𝑝𝐿 ≤ 𝑘] returns 1 if the position of the correct
bucket is in the top-𝑘 positions of a ranked list, and 0 otherwise. In
summary, RR@𝑘k is the fraction of queries in 𝑄𝑑 whose correct
buckets appear in the first 𝑘 positions of the ranked lists. Particu-
larly, in realistic scenarios where reports are automatically assigned
to the most similar buckets, RR@𝑘1 represents the system accuracy
for assigning duplicate reports to buckets.

Unlike RR@𝑘k, MAP can summarize the ranked list quality by
means of a single real value. In this methodology setting, since there
is one relevant item within a ranked list, MAP can be simplified as:

MAP =
1
|𝑄𝑑 |

∑︁
𝑞∈𝑄𝑑

1
𝑝𝐿 (𝑞)

.

MAP values range in the interval [0, 1] whereMAP = 1 when the
correct bucket is among the first elements in all ranked lists.

In real systems, it is important to distinguish a duplicate report
from a singleton since a significant portion of the queries are non-
duplicate reports. Thus, in order to consider such aspect of the
deduplication task, this methodology also cast this task as a binary
classification. In this case, a query is classified as duplicate when
the highest similarity score between the query and its candidate
buckets is greater than a given threshold 𝑡 . For an evaluation that is
independent of the threshold value, the classification performance
is measured by the well-known area under the ROC curve (AUC)
metric [13]. The ROC (receiving operating characteristic) curve is
the plot of true positive rate versus the false positive rate for all
possible values of 𝑡 . The AUC metric derives a single real number
from the ROC curve.

4.4 Parameter Tuning and Model Validation
Following [23], evaluation is performed using two subsequent, but
disjoint, query sets: a tuning set 𝑇 and a validation set 𝑉 . The
query set 𝑉 is composed of reports submitted during a (randomly
selected) period of one year, and the query set 𝑇 comprises the
last 250 reports submitted immediately before 𝑉 . Additionally, 𝑃
is denoted as the set of reports submitted earlier than 𝑇 . In the
experiments, the parameters are first tuned on 𝑇 by means of a
Tree-structured Parzen Estimator (TPE) [3]. Given a maximum
number of iterations8, such optimizer tries to search for parameter
values that maximize the sum of MAP and AUC scores on the
tuning set. Finally, using the best parameters found, we evaluate
the method effectiveness on the corresponding validation set 𝑉 .

Since data distribution tends to significantly change during the
repository lifetime, the performance of the same method can highly
vary depending on the data period used in the evaluation [22]. In
order to better capture the method effectiveness along the whole
repository, 50 validation sets (periods of one year) are randomly
selected in each dataset. Thus, the tuning sets are generated based
on each sampled validation set. In Figure 5, we illustrate an example
where three random validation sets are sampled.
8TPE is run in 100 iterations.

Run 1

Run 2

Run 3

2018 2019 2020 2021

Figure 5: Three validation sets (along with the correspond-
ing tuning sets) sampled from a dataset. The validation set,
tuning set, and 𝑃 in run 𝑘 is represented as 𝑉𝑘 , 𝑇𝑘 , and 𝑃𝑘 ,
respectively.

4.5 Competing Methods
In order to empirically demonstrate the effectiveness and efficiency
of the proposed alignment heuristic, we compare FaST to two op-
timal sequence alignment methods: TraceSim and PDM. TraceSim
significantly outperformed sequence matching and information re-
trieval methods for the majority of metrics (AUC, MAP, and RR@𝑘)
and datasets. On the other hand, PDM was the only method to sur-
pass TraceSim’s performance in one specific scenario and it can be
better optimized than others NW algorithm variants [4, 23]. Finally,
our method is also compared to a modified version of TraceSim,
called TSM, whose match(·) and normalization are equivalent to
FaST’s ones. Our objective is to investigate whether the proposed
match(·) and normalization significantly impact the method effec-
tiveness.

Additionally, FaST is compared to Prefix Match, TF-IDF, and
DURFEX due to their relatively low time complexity. For simplic-
ity, the first method is abbreviated to PrefixM. To guarantee a fair
comparison in the experiments, we implement TF-IDF in our eval-
uation framework following Lucene’s implementation and we only
consider the subroutine names and positions within stack traces
for the crash report deduplication. The subroutine names are the
fully qualified method names in Java’s stack traces while function
names in C++’s ones. Finally, we only evaluate DURFEX on Eclipse
and Netbeans datasets, since it was designed for the Java language.

5 EXPERIMENTAL RESULTS
In this section, we study the effectiveness and efficiency of FaST
in comparison with four competing methods on Ubuntu, Eclipse,
Netbeans, and Gnome datasets. For eachmethod, we report through-
put values (queries/second) and their distributions over the 50 val-
idation sets by means of box plots combined with scatter plots.
Moreover, we measure the speedup between FaST and a competing
technique in terms of throughput on each validation set. Then, we
depict the distribution of the obtained speedup values over the
validation sets using box plots. It is worthy to mention here that
speedup between two methods in dataset depends only how fast
each method compares two stack traces. Thus, other variables re-
lated to the dataset (e.g., the number of reports) do not affect such
measurement.

Furthermore, violin plots [14] are used to present the distribution
values of AUC, MAP, and RR@1 achieved by each method over the
validation sets. Such plots are generated bymeans of seaborn library
and they contains three dashed lines to represent the 25th, the 50th,
and the 75th percentiles. Additionally, we calculate the performance
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differences between FaST and each competitor regarding AUC,
MAP, and RR@1 in each validation set. The differences of such
metrics are denoted ΔAUC, ΔMAP, and ΔRR@1, respectively. These
differences are positive whenever FaST outperforms its competitor.
We report the distributions of ΔAUC, ΔMAP, and ΔRR@1 in the 50
validation sets using box plots. Throughout this section, the mean
values are depicted as white circles in the plots.

In order to assess whether amethod superiority is statistically sig-
nificant, we apply the Wilcoxon signed-rank test to ΔAUC, ΔMAP,
and ΔRR@1 as follows:

𝐻0: The two methods yield the same performance.
𝐻1: The two methods yield different performances.

We accept the alternative hypothesis (𝐻1), consequently rejecting
the null hypothesis (𝐻0), when 𝑝 < 0.01. In the plots, the symbol
⋆ next to the name of a method indicates that the performance
difference to FaST is statistically significant.

In Figure 6 (left), we depict the throughput of FaST and competi-
tive methods on Ubuntu, Eclipse, Netbeans, and Gnome. At the right
of this figure, we report the distribution of speedups between FaST
and its competing methods on the tested datasets. Additionally,
in Figure 7, we depict the differences ΔAUC, ΔMAP, and ΔRR@1
between FaST and competitors on Ubuntu, Eclipse, Netbeans, and
Gnome. Complementary, for each dataset, the distributions of the
absolute metric values are depicted in Figure 8.

Overall, FaST is not only more efficient than the optimal se-
quence alignment methods, but it is also at least as effective as
them. As shown in Figure 6, considering the speedup average, FaST
is two to four times faster than PDM while its speedup ranges
between 4x - 8x regarding TraceSim. In addition to this superior
efficiency, our method significantly surpasses PDM and TraceSim
in nine and six of the twelve possible evaluation scenarios, respec-
tively. In the remaining ones, the performance of FaST and such
techniques are considered as comparable since the differences in
their results are not statistical significant.

As expected, the efficiency superiority of FaST over TSM is simi-
lar to the one observed in the previous TraceSim’s analysis. How-
ever, in terms of effectiveness, we do not find statistical significance
in their performances in the evaluation scenarios, except on Ubuntu
regarding ΔMAP which FaST is superior. Despite this finding, we
cannot conclude whether the normalization and function match(·)
used in FaST are more effective than the ones proposed in TraceSim.
In additional significance tests, we found that TSM’s and TraceSim’s
performances are comparable in all scenario with the exception to
Netbeans regarding RR@1.

In our experiments, PrefixM is the most efficient technique. In
comparison to our method, on average, it is 2.19, 4.30, 6.35, and 2.53
times faster than FaST in Ubuntu, Eclipse, Netbeans, and Gnome, re-
spectively. Such high efficiency is due to the fact that the similarity
is computed only considering the topmost shared frames between
two stack traces, i.e., it can easily filter frames that do not affect the
comparison. However, this negatively affects the method effective-
ness. As reported in Figure 7, PrefixM is significantly outperformed
by FaST regarding AUC, MAP, and RR@1 on all datasets. For in-
stance, the lowest average of ΔAUC, ΔMAP, and ΔRR@1 between
these two methods are +1.57%, +2.31%, and +1.61% in Netbeans.
However, we observe higher performance differences in datasets

with C++ stack traces, e.g., FaST largely outperforms PrefixM by
4.20%, 8.76%, and 7.67% regarding ΔAUC, ΔMAP, and ΔRR@1 in
Ubuntu.

As shown in Figure 6, the second most efficient technique is
TF-IDF. Regarding FaST, such method speeds the experiments, on
average, by 1.22x, 1.19x, 1.49x, and 2.09x in Ubuntu, Eclipse, Net-
beans, and Gnome, respectively. Such speedups are considerable
lower than the ones found in PrefixM. But, similar to PrefixM, FaST
significantly outperforms TF-IDF in all evaluation scenarios. For
example, the lowest average value of ΔAUC, ΔMAP, and ΔRR@1
between FaST and TF-IDF are +4.23%, +2.23%, and +2.54%, respec-
tively. However, such performances occurs in datasets that contain
stack traces from C++ applications. Considering only Netbeans and
Eclipse, those values increase to 9.27%, 5.66%, and 6.23%, respec-
tively. Finally, although we were not able to observe a conclusive
efficiency difference between FaST and DURFEX, the results show
that our method is statistically more effective than the latter regard-
ing ΔAUC, ΔMAP, and ΔRR@1 in all datasets.

6 THREATS TO VALIDITY
In this section, the threats to validity of our study are presented as
follows.

Data quality In this study, the experimental evaluation is based
on manual labeled data provided in BTSs. However, due to the
complexity associated to the deduplication task, reports might be
assigned to incorrect buckets or considered as singletons by triagers.
Moreover, stack traces are mostly extracted from textual data, i.e.,
from files and report descriptions. However, due to this unstruc-
tured data nature, data extraction is not trivial and, therefore, por-
tion of text might be incorrectly identified as a stack trace, and
vice-versa. To mitigate these problems, we employ datasets that
have been used in previous studies. Additionally, regarding misla-
beled data, we used data from popular open source projects that
contain mature triage processes. Finally, Rodrigues et al. [23] miti-
gate the problem related to stack trace extraction by using parsers
already employed in real environments or well-known studies.

Subject selection bias. In this paper, we perform an empirical
study to compare the effectiveness and efficiency of distinct meth-
ods. Thus, due to different domain characteristics, our findings
might not be observed in other software projects. To mitigate such
threat, our experimental setup includes data from different projects
and two distinct programming languages. Moreover, the experi-
mental methodology and framework are developed to replicate real
environments as much as possible.

7 CONCLUSIONS
In this study, we proposed FaST, a novel alignment method heuris-
tic for crash report deduplication. In contrast to previous methods
based on optimal sequence alignment, FaST heuristically computes
the similarity of stack traces in linear time.We experimentally evalu-
ated FaST and its competing methods by means of the methodology
proposed in [23]. Our results revealed that FaST is consistently
faster than previous SOTA methods while being at least as effective
– it was more effective in many of the considered scenarios. In fact,
our experimental results indicate that sub-optimal alignments can
be as effective as optimal ones for crash report deduplication.
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Figure 6: At the left, throughput (queries per second) of methods in all validation sets of Ubuntu, Eclipse, Netbeans, and Gnome.
At the right, the speedup between FaST and the competing methods regarding throughput.

The proposed modifications on TraceSim’s scoring scheme al-
lows our method to compute the similarity score by exclusively
considering the shared frames between stack traces. For that, the
assumption is that the sums of frame weights of the stack traces
are known before the algorithm execution. This method capability
combined to frame independence makes our method more appro-
priate for effectively speeding up the deduplication by means of
inverted index data structure [18] or MapReduce [8]. Thus, as a
possible avenue for future works, we intend to evaluate the method
speedup achieved when inverted index data structure is used and

the method is implemented based on MapReduce. Moreover, analo-
gous to prefix match, we intend to investigate different strategies
to compare stack traces only considering a small portion of the
frames.
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Figure 7: The distribution of ΔAUC, ΔMAP, and ΔRR@1 between FaST and each competing method in all validation sets of
each dataset.
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Figure 8: The distributions of AUC, MAP, and RR@1 achieved by FaST and competitors in all validation sets of each dataset.
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